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Dose influences mechanism; and over a wide range of doses, one can envision that mechanism
will change with changing dose. This basic concept in toxicology is juxtaposed with the biologic
importance of maintaining normal DNA methylation status to provide the focus of this paper. The
idea that altered DNA methylation plays a variety of roles in carcinogenesis is compatible with
three key features of this multistage process: clonal selection of abnormal cells in a progressive
fashion, the reversibility of tumor promotion, and the multiplicity of tumor phenotypes. A relatively
low capacity to maintain normal methylation status appears to explain, in part, the high propensity
of the B6C3F1 mouse to develop liver tumors. This observation supports the view that a mouse

liver tumor response is not an appropriate end point for human risk assessment. Additionally, it is
suggested that altered DNA methylation can be viewed as a secondary mechanism underlying
carcinogenesis. The knowledge that a chemical is acting by a mode of action involving a

secondary mechanism can be used to support a safety factor or multiplicity of exposure approach
to risk assessment. Environ Health Perspect 106(Suppl 1):285-288 (1998).
http.//ehpnetl.niehs.nih.gov/docs/1998/Suppl-1/285-288goodman/abstract.html
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Introduction
In the 16th century Paracelsus noted:
"What is there that is not a poison? All
things are poison and nothing is without
poison. Solely the dose determines that a
thing is not a poison." There is a consensus
that he was the first person to deal with dose
in a quantitative manner and that he was, in
general, discussing a threshold or no-effect
level (1). This view is supported by clear
historical examples regarding cancer and
noncancer end points, e.g., chloroform-
induced hepatocarcinogenesis in mice
occurs after repeated oral administration
only if individual doses are large enough to
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produce liver necrosis (2,3). Thus, it
appears that Paracelsus' thinking is funda-
mentally correct. This paper will focus on
this concept and its importance with regard
to utilizing mode of action information to
take a rational approach towards carcinogen
risk assessment.

The Carcinogen Bioassay
The carcinogen bioassay is a qualitative
test (4). However, our purpose is not to
simply identify chemicals that can be
labeled as carcinogens. On the contrary,
the overall goal is to provide a reasonable
estimate of the possible hazard that a
chemical might pose to people under real-
istic conditions of exposure. Three key
issues center around dose selection,
dose-response relationships, and species-
to-species extrapolation (5,6). Therefore,
the bioassay should be approached more like
a research project than simply a test because
a rational approach to risk assessment
requires the use of biologic information (7).

Dose Influences Mechanism
Dose influences mechanism; and over a
wide range of doses, one can envision that
mechanism will change with changing
dose. Thus, a carcinogenic effect observed

at a high dose is not necessarily expected to
occur at lower doses (5), especially when
dealing with nongenotoxic chemicals (8).
For example, a report on the relationship
between use of the maximum tolerated dose
(MTD) and study sensitivity for detecting
rodent carcinogenicity concluded:

... [an] important limitation of our
analysis is that the range of doses used
in NCI/NTP [National Cancer
Institute/U.S. National Toxicology
Program] long-term rodent studies is
generally rather narrow, typically
extending from 1/4 MTD to MTD or
from 1/2 MTD to MTD. Thus, it could
be argued that carcinogenic effects that
are present at even the "lowest" of these
doses are due to the same cell killing and
compensatory mitogenesis effects that
occur at the MTD (9).

Increased cellular proliferation may
facilitate carcinogenesis because mitogene-
sis can facilitate mutagenesis (10). In gen-
eral, there is a positive association between
increased cell proliferation and carcinogene-
sis (11,12). However, in view of the com-
plexities involved in the transformation of a
normal cell into a frank malignancy it is not
surprising that a one-to-one relationship
between cell proliferation and carcinogenesis
is not always apparent (13).

Dose Selection
A consideration of dose selection for the
bioassay entails two primary questions: a)
what is an appropriate range of doses,
including the MTD, to use for chronic
exposure; and b) after a bioassay has been
completed, what are the appropriate doses
to use to estimate the possible effect(s) the
agent in question may produce in humans
under realistic conditions of exposure?
Two key principles underlie dose selection:
a) it is not correct to make an assumption
a priori that these doses are the same (i.e.,
a dose that appeared to be a reasonable
MTD based on a 90-day study may turn
out to be too toxic in a chronic study); and
b) any high dose, no matter how high, that
permits the test animals to survive long
enough to develop cancer is not necessarily
an appropriate dose to use for the purpose
of a risk assessment (5).

Genotoxic versus
Nongenotoxic Carcinogens
Genotoxic carcinogens are capable of
interacting directly or interacting with DNA
after being metabolized (14). Presumably,
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mutagenesis provides a basis for their
action. Nongenotoxic compounds appear
to produce cancer either in a species-
and/or dose-specific fashion (15), whereas
most of the transspecies carcinogens are
genotoxic, i.e., mutagens (16). However,
many noncarcinogens are mutagens: 30%
of 83 noncarcinogens were reported to be
mutagens (17). Furthermore, only 30% of
mouse liver-s.pecific carcinogens are muta-
gens (17). If mouse liver tumors can be
induced by nonmutagens it is logical to
c6iiSider that such specific tumor responses
by mutagens may occur independent of
genotoxicity (18). Carcinogenesis involves a
variety of alterations to the genome, includ-
ing point mutations, chromosome dele-
tions, and epigenetic phenomena (19). It
is a mistake to equate mutagenesis with
carcinogenesis (11).

The Role of Altered
DNA Methylation
in Carcinogenesis
We have made progress in discerning
mechanisms involved in carcinogenesis by
focusing on the variety of roles that alter-
ations in DNA methylation (5-methylcyto-
sine content of DNA) may play (20) and
by placing an emphasis on testing the
hypothesis that hypomethylation is an
epigenetic, nongenotoxic mechanism
involved in tumor promotion (21-23).
Hypomethylation may occur by one or a
combination of the following:
* a passive mechanism involving a failure

to maintain the normal symmetrical pat-
tern of methylation due to a decreased
ability to carry out the S-adenosylme-
thionine-requiring maintenance methy-
lase reaction (24,25), either during
periods of cell replication [reviewed in
Razin and Cedar (26)] or as a conse-
quence of carcinogen adducts in DNA
(27-29); and

* an active mechanism involving the
removal of 5-methylcytosine from DNA
and its replacement with cytosine (30).
In this context, it should be noted that

the U.S. Environmental Protection Agency's
proposed guidelines for carcinogen risk
assessment state:

A failure to detect DNA damage and
mutation induction in several test systems
suggests that a carcinogenic agent may act
by another mode of action....It is possible
for an agent to alter gene expression...by
means not involving mutations.... For
example, perturbation of DNA methyla-
tion patterns may cause effects that
contribute to carcinogenesis (31).

The idea that altered DNA methylation
plays a variety of roles in carcinogenesis,
none of which are mutually exclusive, and
involves genetic and epigenetic events
(20,32), is compatible with the view that
carcinogenesis is a multistep/multistage
process that exhibits three key features:
* There is a clonal evolution of tumor cell

populations involving a stepwise selec-
tion of sublines that are increasingly
abnormal both genetically and biologi-
cally and have a selective growth advan-
tage over adjacent normal cells and
most of the variants are eliminated (33).

* The promotion stage is reversible in the
operational sense (34).

* Tumors exhibit a multiplicity of phe-
notypes-even those tumors arising in
a particular organ spontaneously or
after specific carcinogen exposure (35).
Altered DNA methylation may result

in an altered pattern of gene expression
that could provide subpopulations of cells
with a growth advantage (36-40). The
phenomenon of de novo methylation
provides the potential for reversal of
hypomethylation [reviewed in Counts and
Goodman (20,22,37)] and altered DNA
methylation may result in an altered pat-
tern of gene expression that offers the
potential for multiple tumor phenotypes.

Tumorigenesis in mouse liver is used as
our model system (36,37,39-41) and phe-
nobarbital serves as a nongenotoxic rodent
tumor promoter (42). We use the B6C3F1
(C57BL/6 x C3H/He) mouse, which is
highly sensitive to the development of spon-
taneous and chemical-induced liver tumors
(43,44). This may be explained by the
inheritance of hepatocarcinogen sensitivity
genes from the paternal C3H/He that influ-
ence the promotion stage of carcinogenesis
(45,46,47). Our experimental approach
permits relevant comparisons to be made
between the B6C3F 1 mouse and its paternal
C3H/He strain that is also highly sensitive
and the relatively resistant maternal
C57BL/6 strain (43,44). The results of our
research indicate that the B6C3F1 mouse is
deficient with regard to is ability to main-
tain normal DNA methylation. This
appears to underlie in part its uniquely high
susceptibility toward development of liver
tumors (22,23,36,39,40). We believe that
hypomethylation is relevant to tumorigene-
sis in both rodents and humans (23) and
that humans may be less susceptible than
rodents in part because of a better ability of
human cells to maintain normal patterns of
DNA methylation [reviewed in Counts and
Goodman (23) and Counts et al. (39)].

The Role of Mouse Liver
Tumors in Risk Assessment
Fourteen years ago an advisory committee
examined the role of mouse liver tumors
in risk assessment and concluded "...it
would be prudent to severely limit or even
eliminate exposure to potentially geno-
toxic chemicals which induce malignant
tumors at multiple sites or in multiple
species, and at low exposure levels. Less
concern is warranted in the case of chemi-
cal induction of tumors only in mouse
liver...." (48). Data accumulated in recent
years are supportive of this position and
justify its expansion. It is not appropriate
to make human risk assessment decisions
based on a mouse liver tumor response.
However, in those situations where the
results of a bioassay indicate that the
mouse liver is one of several sites where an
increased tumor incidence occurs, the
mouse liver tumor response and other tar-
get sites for tumorigenesis should be evalu-
ated with regard to the mode of action of
the chemical in question. Safety assess-
ment for those chemicals (especially
nongenotoxic chemicals) acting through a
threshold-exhibiting mode of action
should be based on a safety factor or mul-
tiplicity of exposure approach (23,39). A
constructive conceptual framework that
provides guidance for the use of mode of
action data for carcinogens in the regula-
tion and classification of carcinogens has
been presented (8).

Altered DNA Methylation
as a Secondary Mechanism
in Carcinogenesis
The maintenance of nascent DNA
methylation status should be regarded as a
fundamental homeostatic mechanism.
Accordingly, it is appropriate to invoke the
secondary mechanism concept (49) in this
context. Altered DNA methylation can be
viewed as a secondary mechanism involved
in carcinogenesis; assessment of this parame-
ter may provide insight leading to a more
rational interpretation of animal studies for
human risk assessment (23). Therefore, an
examination of DNA methylation status
should be considered for inclusion as an
ancillary component (e.g., in addition to
standard approaches involving histopathol-
ogy, assessments of cell proliferation in vivo,
and in vitro tests for genotoxic potential) of
both subchronic studies and the carcinogen
bioassay (22,23,39). This can aid in discern-
ing the mechanism of action (e.g., a possible
nongenotoxic, threshold-exhibiting mecha-
nism) of the chemical being evaluated. In
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addition, use of this information in
conjunction with standard approaches could
facilitate a rational approach to dose setting
and the selection of appropriate doses for
risk assessment, e.g., if toxicity occurs only
at doses above those that cause altered DNA
methylation in the target organ(s), these
data could aid in providing the basis for
placing a proper emphasis on lower doses
(23,39). This suggested strategy is consis-
tent with a recently proposed set of princi-
ples for the selection of doses in chronic
rodent bioassays (50). However, it would
not be appropriate to consider measurement
of alterations in DNA methylation as a
short-term test for carcinogens (22,23,39).

Conclusion
Emphasis should be placed on research that
may discern probable thresholds for the car-
cinogenic effect of carcinogenic agents,
especially nongenotoxic chemicals (5,23).
This must involve hypothesis-driven
research and must be based on insight
regarding the mode of action of the chemi-
cal of interest (8). The practical significance
here is that the proposed strategy can pro-
vide the basis for a safety factor or multi-
plicity of exposure approach to risk
assessment for those chemicals for which a
likely threshold can be demonstrated
(5,51). This is a rational approach to risk
assessment (Figure 1).

Mode of action

Threshold

Safety factor approach (or margin of exposure)

Figure 1. A rational approach to risk assessment. For
those chemicals that act by a nonlinear, threshold-
exhibiting mode of action, use of a safety factor or
margin of exposure provides a rational approach to risk
assessment. Under the circumstances described, a risk
estimate based on a simple linear extrapolation from
high dose to low dose is not appropriate.
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